مدلسازی فرایند تبدیل خشک متان بهکمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
Authors
Abstract:
پیشبینی فراوردههای (هیدروژن و کربن مونوکسید) تبدیل خشک متان بهکمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیهسازی شد. دادههای تجربی موردنیاز برای مدلسازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمعآوری شد. اثر عاملهای فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینشپذیری نسبت به فراوردههای مورد بررسی قرار گرفتند. شبکه پیشخور با الگوریتم پس انتشار خطا، تابع آموزش انتشار رو به عقب لونبرگ مارکوارت، تابع فعالسازی سیگموئیدی برای لایه مخفی و تابع فعالسازی خطی برای لایه خروجی، مناسبترین شبکه عصبی بهدست آمده در این پژوهش است. برای مثال، مدل شبکه عصبی مصنوعی تبدیل متان 25/12% و گزینش پذیری نسبت به هیدروژن و کربنمونوکسید به ترتیب 71/15% و 74/85% را در توان تخلیه 4 وات پیشبینی کرد که مقادیر خطای مدل برای درصد تبدیل متان، گزینشپذیری نسبت به هیدروژن و کربنمونوکسید به ترتیب برابر 0/47%،1/2% و 0/2% است. برای رسیدن به شرایط بهینه عملیاتی در فرایند تبدیل از ترکیب الگوریتم ژنتیک و شبکه عصبی مصنوعی استفاده شد. نتیجهها نشان دادند که شدتجریان خو.راک ورودی بهینه 175 میلیلیتر بر دقیقه و توان تخلیه بهینه 6 وات بود. در این شرایط درصد تبدیل متان 25/85% و گزینشپذیری نسبت به هیدروژن برابر 65/15% بهدست آمد. اختلاف کوچک در شرایط عملیاتی بهینه بین مقادیر پیشبینی شده و تجربی، تأیید میکند که مدل شبکه عصبی مصنوعی ترکیب شده با الگوریتم ژنتیک، ابزاری مناسب برای مدلسازی و بهینهسازی فرایند تبدیل خشک متان بهکمک پلاسماست.
similar resources
مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
full textمدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °c 25 تا °c 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
full textتعیین ویژگیهای مؤثر بر پایداری ساختمان خاکهای مناطق خشک با استفاده از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی
پایداری خاکدانهها بهعنوان یکی از کلیدیترین شاخصهای کیفیت فیزیکی خاک، بیانگر قدرت نسبی خاک در برابر نیروهای فرساینده و تخریب مکانیکی است. در این پژوهش، بهمنظور شناسایی یک زیرمجموعه از مهمترین ویژگیهای مؤثر بر شاخص میانگین وزنی قطر خاکدانهها (MWD)، از الگوریتم ترکیبی ژنتیک-شبکه عصبی مصنوعی (GA-ANN) استفاده گردید. افزون بر آن، قابلیت شبکههای عصبی مصنوعی (ANNs) و رگرسیون چند متغیره خطی (M...
full textبهینهسازی فرایندهای عملیاتی پیش تصفیه آب صنعتی با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
full text
تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
full textتخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال
The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...
full textMy Resources
Journal title
volume 11 issue 2
pages 49- 60
publication date 2017-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023